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Abstract

Predicting faults before they occur helps to avoid
potential safety hazards. Furthermore, planning
the required maintenance actions in advance re-
duces operation costs. In this article, the focus
is on electrochemical cells. In order to predict a
cell’s fault, the typical approach is to estimate the
expected voltage that a healthy cell would present
and compare it with the cell’s measured voltage
in real-time. This approach is possible because,
when a fault is about to happen, the cell’s mea-
sured voltage differs from the one expected for the
same operating conditions. However, estimating
the expected voltage is challenging, as the voltage
of a healthy cell is also affected by its degradation
– an unknown parameter. Expert-defined paramet-
ric models are currently used for this estimation
task. Instead, we propose the use of a neural
network model based on an encoder-decoder ar-
chitecture. The network receives the operating
conditions as input. The encoder’s task is to find
a faithful representation of the cell’s degradation
and to pass it to the decoder, which in turn predicts
the expected cell’s voltage. As no labeled degra-
dation data is given to the network, we consider
our approach to be a self-supervised encoder. Re-
sults show that we were able to predict the voltage
of multiple cells while diminishing the prediction
error that was obtained by the parametric models
by 53%. This improvement enabled our network
to predict a fault 31 hours before it happened, a
64% increase in reaction time compared to the
parametric model. Moreover, the output of the
encoder can be plotted, adding interpretability to
the neural network model.
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1. Problem Description
Electrolysis is the process of decomposing a chemical prod-
uct into various byproducts by applying an electrical current
(Wendt & Kreysa, 1999). It takes place in electrolyzers,
which are systems composed of multiple electrochemical
cells. These cells act similarly to resistors: electrical current
passing through them causes a voltage drop. The magnitude
of this voltage drop depends on the operating conditions
and the cell’s degradation, increasing steadily when a fault
is about to happen.

Faults in electrochemical cells may become safety hazards.
In order to diminish their occurrence, they are usually re-
placed every four years. This heuristic comes from the sta-
tistical analysis of the average lifetime of past cells, which
represents an aggregation of data from multiple cells. Thus,
it does not take into consideration the specificity of each
cell, which is needed to take action concerning their main-
tenance. In order to implement a more efficient strategy
that adequately considers such specificity, the cell’s degrada-
tion must be monitored. However, degradation can only be
determined directly by performing offline, and sometimes
destructive, tests (Causserand & Aimar, 2010). Our objec-
tive is to use non-invasive methods that do not require the
full stoppage of the electrolyzer. As such, the cell’s degra-
dation must be inferred indirectly from other measurable
properties. In this article, our approach relies on predict-
ing the voltage that a healthy cell would present (V̂t) and
comparing it to the cell’s measured voltage in real-time (Vt ).
If there is a divergence between the two of them, a fault
is signaled. The divergence threshold and the type of fault
diagnosed depend on the shape of the divergence, following
a set of rules proposed by experts.

In order to predict the voltage of a healthy cell, the following
limitations are considered:

1. The cell’s voltage drifts slowly over time due to its
degradation.

2. Even for the same operating conditions and degrada-
tion level, the voltage of a cell differs from the ones of
similar cells. This difference is induced by disparities
in manufacturing, installation procedures, and other
factors that cannot be directly quantified. The latter is
referred to in this article as the specificity of each cell.
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3. There is a delay between a change in the operating con-
ditions and the response of the cell. In order to account
for this delay, the operating conditions at the previous
time-steps must be considered by the prediction model.

4. Inside the electrolyzer, cells are electrically connected
in series and they all receive the same chemical input.
This means that the only measurable variable that is
different for each cell is their voltage. This voltage is
stored according to the position of each cell in the elec-
trolyzer, and not according to the unique identification
number of each cell. Moreover, as previously stated,
cells’ degradation data is not available.

5. In order to predict faults, the predicted voltage must be
independent from the measured voltage. This limita-
tion entails that the measured voltage cannot be used
as an input to the prediction model.

6. Electrolyzers are shut down and restarted many times
throughout their lifetime. During each shutdown, the
data collection is stopped. Any cell may be substituted
or exchanged at the discretion of the plant’s operator,
without being reflected in the data. The intervals when
the electrolyzer is operating are called cycles and, as all
its cells are under tension, no changes are performed
by the operator.

2. Previous Work
To be able to find the right model and techniques that ap-
ply to our problem, we first need to understand the system
we are working with, which is a chemical electrolyzer. As
previously stated, chemical electrolyzers are composed of
multiple cells, where the electrolysis process takes place.
There are different cell technologies, the most efficient being
Ion-Exchange Membranes, on which our article is focused.
In these cells, the anode and the cathode are separated by a
semi-permeable membrane that does not permit both elec-
trolytes to mix, yet allows the ions needed for the electrol-
ysis to travel across (Paidar et al., 2016). As time passes,
holes start to appear in the membrane, and the electrodes
start to lose their coating, thus increasing the voltage of the
cell (Jalali et al., 2009). As the degradation advances, it
reaches a point where an undesirable reaction between the
solution in the anode and the solution in the cathode starts
to occur. This reaction is characterized by a spike in the
cell’s voltage (Institute, 2018). It is a dangerous situation
requiring the electrolyzer to be stopped immediately.

Therefore, detecting anomalies in the cell’s voltage leads
to predicting faults in the cell. As previously stated, we
do so by predicting the expected voltage that a healthy cell
would present and then comparing it with its actual mea-
sured voltage. The better the accuracy of the model used for

predicting such voltage, the earlier it is possible to signal
the fault.

In order to calculate the expected cell’s voltage (V̂t), the
underlying chemical reaction needs to be approximated.
This function is composed of many parameters, which need
to be estimated. Some of them are operation-specific, i.e.,
identical for all the cells that perform the electrolysis for
the same operating conditions. However, as per limitation 2,
there are also cell-specific parameters. Moreover, limitation
1 implies that there are also degradation-specific parameters
that change over time as the cell degrades.

In order to define a model that accounts for all these param-
eters, three types of data are needed: operation data, cell-
specific data, and degradation-specific data. Nonetheless,
as per limitations 4 and 5, we neither have cell-specific data
nor degradation-specific data that we can use. Thus, if only
operation-specific parameters are used, the same voltage
would be predicted for each cell. This is not an acceptable
result, because the specificity of each cell would be lost.
In order to overcome this problem, the current approach
relies on fitting a different model for each cell and retraining
it periodically in order to update the degradation-specific
parameters. As per limitation 6, the retraining frequency
must be at least once per cycle.

An expert-defined parametric model is currently used for
this task (Tremblay et al., 2012). Operation-specific param-
eters are defined by the experts, while cell and degradation-
specific parameters are estimated at the beginning of each
cycle by using a linear regression. This model has the ad-
vantage of being simple, thus needing fewer observations to
train than equivalent non-parametric models (Veillette et al.,
2010). This is crucial, as the observations used at each cycle
for training the model cannot be used for predicting the
cells’ voltage. Therefore, during the training period, it is not
possible to detect faults either. This model also has easy to
explain results. Nonetheless, it requires an understanding of
the chemical process to define it. Suppositions in the model
entail an accuracy loss, as they do not account for all the
details present in a production environment.

An alternative approach is to use non-parametric Machine
Learning (ML) techniques. Support Vector Machines
(SVM) were used to predict the voltage of a chlor-alkali
cell and explore its response to different operating condi-
tions (Kaveh et al., 2009). They obtained better accuracy
than parametric models, but the scope of their work was
limited to a single cell in a controlled lab environment with
pre-defined operating conditions. They carried out a similar
study using artificial Neural Networks (NNs) (Kaveh et al.,
2008). However, their network only had two hidden layers
and a reduced number of neurons, falling behind recently
developed networks.
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NNs are non-parametric models composed of multiple math-
ematical entities called neurons. Their name comes from
the fact that they are inspired by how biological brains work
(Goodfellow et al., 2016). Neurons are grouped in layers.
In the most basic neural architecture, called the Multi-Layer
Perceptron (MLP), each neuron of a particular layer is con-
nected to all the neurons of the previous layer. A scalar,
called weight, quantify each connection. The neuron’s out-
put is the sum of the values of each neuron from the previous
layer multiplied by their respective weights. Up to this point,
the output of the model would be a linear combination. In or-
der to approximate non-linear functions, the output of each
neuron is transformed by an activation function (Nielsen,
2015). Indeed, when using non-linear activation functions
and enough neurons combined with data, NNs are consid-
ered to be universal approximators (Pinkus, 1999). For our
application, this is primordial: we are no longer forced to
make assumptions about the underlying chemical function.
There are many architectures derived from the general MLP,
each of them specifically tailored to work with a different
kind of input data and objective. Examples of these archi-
tectures are Recurrent Neural Networks (RNNs) and neural
encoders, which are both used in this article.

As per limitation 3, we are interested in RNNs for our appli-
cation. An RNN is a particular neural architecture that deals
with sequential data. It accomplishes so by keeping an inter-
nal state that is updated for every time-step of the sequence
(Karpathy, 2015). This internal state serves the purpose of a
memory, allowing past information to persist in the network.
In order to predict the output of a certain time-step, it con-
siders the input for that time-step and the internal state from
the previous time-steps. However, RNNs struggle when
dealing with long temporal sequences (Bengio et al., 1994).
Long-Short Term Memory (LSTM) networks are a type of
RNNs that does not suffer from this problem (Hochreiter
& Schmidhuber, 1997). LSTMs are capable of modifying
their internal state, either by removing or by adding new
information, through the use of learnable gates (Olah, 2015).
This flexibility makes LSTMs to be more commonly used
in practice than RNNs.

A neural encoder is a type of neural architecture whose
objective is to take an input vector and reduce its dimension-
ality to a desired one. It is usually paired with a decoder.
The decoder receives the output of the encoder and trans-
forms it to minimize an objective function. The whole
network is trained backpropagating the loss of the decoder
(Rumelhart et al., 1985). If the objective of the decoder
is to reconstruct the original input vector, it is called an
autoencoder (Hinton & Salakhutdinov, 2006). A review of
different types of autoencoders is presented in the work of
Tschannen et al. (Tschannen et al., 2018). Autoencoders are
often used for anomaly detection (Sakurada & Yairi, 2014)
and noise reduction (Vincent et al., 2008). They are also

applicable to time sequences in combination with LSTMs
(Malhotra et al., 2016).

2.1. Originality

In this article, we develop a method to apply NNs to the
voltage prediction of all the electrolyzer’s cells. The model
works in a production environment, where operating condi-
tions are not pre-defined, and each cell has a different level
of degradation. The model also has better accuracy than
the parametric model currently in use. Moreover, it does
not need more observations per cycle for starting to make
predictions.

As NNs require more data than parametric models to ap-
proximate a function, we take a different approach. Instead
of fitting a different model for each cell and cycle, we pro-
pose a neural network that is trained with data currently
available, thus avoiding retraining once deployed. This net-
work is based on an encoder-decoder architecture, where
we substitute the decoder by a predictor – a subnetwork that
predicts the cell’s voltage. Therefore, instead of training the
network by minimizing the reconstruction error of the input
sequence, we train it by minimizing the error between the
voltage predicted by the network and the measured voltage.

In order to overcome all the six limitations previously men-
tioned, the originality of our approach in comparison with
the already existing approaches is:

1. The encoder subnetwork addresses limitations 1, 2, and
6. It does so by finding two features that represent the
specificity of each cell and that are updated at each
cycle to account for the degradation.

2. The predictor addresses limitation 3, as it takes into
account the temporality of the observations.

3. Together, the encoder and the predictor address limita-
tions 4 and 5. The predictor does not use the voltage
as an input, yet it is still able to predict a different
voltage for each cell, despite using the same operating
conditions as input. It accomplishes so by taking the
output of the encoder as an additional input, which is
unique for each cell. Hence, the voltage prediction is
not biased by the cell’s measured voltage.

3. Data Preparation
3.1. Features

Data is collected from two different sources. The first source
is the plant’s control system, which registers three features
common to all the cells in the electrolyzer. These features
are the electrical current that passes through the cells (I),
and the temperature plus the concentration of the caustic
at the outlet of the electrolyzer (T and X respectively).
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Table 1. Excerpt of the dataset where n represents the last observa-
tion, and m the last electrolyzer’s cell.

Index I T X V1 . . . Vm

1 1.163 76.668 31.949 2.475 . . . 2.468
2 1.887 76.555 31.945 2.532 . . . 2.518
3 2.072 76.501 31.941 2.562 . . . 2.549
4 2.036 76.449 31.937 2.560 . . . 2.554
5 2.425 76.397 31.937 2.577 . . . 2.562
. . . . . . . . . . . . . . . . . . . . .
n-4 16.311 88.742 32.672 3.380 . . . 3.318
n-3 16.310 88.733 32.673 3.380 . . . 3.318
n-2 16.310 88.724 32.673 3.380 . . . 3.318
n-1 16.309 88.715 32.674 3.381 . . . 3.317
n 16.309 88.706 32.675 3.381 . . . 3.317

The second source is the output of sensors that measure
the voltage of each cell individually (V ).

Cells’ measurements are carried out sequentially, which
means that the controller reads a sensor and then proceeds
to read the next one. This process is repeated for every cell
in the electrolyzer and takes between one and two seconds
to loop over all the cells. The plant’s controller, on the other
hand, does not follow a strict pattern of data collection. Each
sensor connected to it has a different sampling rate, varying
from one to around thirty seconds, which results in data
observations that are misaligned and sampled at different
intervals. In order to solve this problem, we downsample
and align the measurements to the minute. This approach
provides enough resolution to detect possible faults, as faults
develop in the scale of hours. It also reduces the amount of
unnecessary training data and facilitates the deployment of
the model in slower computing processors, as the latency
requirements are less strict.

The resulting data after alignment is tabulated. Each row
represents a different time of observation, and there is a
different column for each electrolyzer’s feature and cell.
An electrolyzer is usually formed of around 160 cells. An
excerpt of this data is presented in Table 1.

3.2. Cycles

Electrolyzers are stopped and started many times during
their lifetime due to production constraints, changing de-
mand, work shifts, or maintenance requirements. The inter-
val of time between a consecutive start and stop is known
as a cycle, and its length ranges from some hours to several
weeks, depending on those conditions. Each cycle is divided
into two phases of different lengths – the startup and the
operation phase. Both cycle’s phases are shown in Figure 1.

The startup phase occurs when the electrical current in-
creases from zero to 16 kA. The 16 kA threshold, defined by
an expert, represents the moment when the cells reach their
full production conditions. The rate at which the current

Figure 1. Evolution of the electrical current of the electrolyzer
during a complete cycle. The startup phase is plotted in blue and
the operation phase, in orange. Notice the length’s difference
between both phases.
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increases differs for each startup, due to changes in the oper-
ating practices decided by the plant’s operators. The length
of this phase ranges anywhere from 20 minutes to 12 hours,
which complicates making comparisons between different
startups. This length’s difference is shown in Figure 2. As
previously mentioned, each cell responds differently to the
same operating conditions, resulting in a different voltage
increase during the startup. The voltage increases of three
different cells are shown in Figure 3.

Note that cycles A, B, and C, as well as cells X, Y, and Z, are
used as examples through the article. We chose these cycles
because their operating conditions are significantly different.
The three cells are chosen because they have different levels
of degradation. Please note that their color schemes remain
the same for all the figures in the article.

The operation phase includes the rest of the cycle. The
electrical current varies between 7 kA and 16 kA. We are
especially interested in predicting the voltage during this
phase, as a cell’s fault would cause a significant disturbance.

4. Methodology
4.1. Data Processing

As previously stated, when the electrolyzer is shut down,
data collection is stopped, and so, it appears as missing data
in the file. A new cycle is detected if the time difference
between two consecutive observations is longer than 10
minutes and the following experts’ conditions are met:

1. The electrical current reaches 16 kA during the cycle.

2. The duration of the startup phase is less than 12 hours.

3. The operation phase has at least the same duration as
the startup phase.
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Figure 2. Voltage during the startup phase of the same cell (Y) for
three different cycles (A, B, C).

0 50 100 150 200 250 300 350 400
2.4

2.6

2.8

3

3.2

3.4
Cycle A
Cycle B
Cycle C

Startup - Cell Y

Time (Minutes)

Vo
lta

ge
 (V

)

Data files are processed in order to ensure the satisfaction
of these conditions, following the procedure outlined in
Algorithm 1 and Algorithm 2.

Once the data is structured in cycles, with their startup and
operation phases defined, we proceed to scale it. For each
data column, we use the unity-based normalization scaling
method, also known as Min-Max Scaling. It scales the data
linearly, so all the values are in the range [0,1] (Raghav et al.,
2018). We do not use more sophisticated scaling techniques
since our data is not normally distributed and since outliers
are already removed in the original database. The column is
scaled as Xscaled = (X−min)/(max−min).

The minimum (min) and maximum (max) values use for scal-
ing each feature are common for all the production plants
and are determined by experts. They are the same for all
the electrolyzers, so it is possible to use the same trained
model for all of them. Missing observations appear as ‘NaN’

Algorithm 1 Detect Possible Cycles
Input: time array with n observations
Initialize: initial cycle index← 0, i← 0
Initialize: cycle list← [ ]
while i < lenght(time array) do

di f fi← time array(i+1)− time array(i)
if di f fi > 10 minutes then

cycle← time array[initial cycle index : i]
cycle list.append(cycle)
initial cycle index← i+1

end if
i← i+1

end while

Figure 3. Voltage during the startup phase of three different cells
(X, Y, Z) for the same cycle (A).
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and are substituted by the value of ‘-1’ in order to keep
them outside of the scaler’s range. After following this pro-
cedure, a subset of the resulting data is shown in Table 2
The final step is to export the data to TFRecord files, which
is a binary format developed by Google and optimized for
the preprocessing tf.data.Dataset API of TensorFlow 2.0
(Google, 2019). We export a different file for each cycle,
containing all the cell’s observations.

4.2. Model Architecture

As previously explained, we want to predict the voltage over
the whole operation phase of the cycle, so the training must
only be performed during the startup phase. However, neural
networks are complex non-linear methods that require a
large amount of data to converge to an optimal solution.
Hence, only using the startup data for training a new model
at each cycle does not provide satisfactory results.

Algorithm 2 Validate Cycles
Input: cycle list
for each cycle in cycle list do

if any observation in cycle has current > 16 kA then
idx← First observation where current > 16 kA
if idx ≤ 12 hours then

startup← cycle[0 : idx]
operation← cycle[idx :−1]
if lenght(operation) ≥ length(startup) then

cycle is a valid cycle
end if

end if
end if

end for
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Table 2. Subset of data from Cycle A after being processed. Data
has been scaled and missing observations, replaced by ‘-1’. Note
that, as expected, the input features at each time-step are the same
for cells one and m, where m represents the last electrolyzer’s cell.

Cell Phase Index I T X V

1 Startup 1 0.010 0.417 0.790 0.441
2 0.054 0.413 0.790 0.450
3 0.066 0.411 0.789 0.455
4 0.064 -1 0.789 0.454

. . . . . . . . . . . . . . .
ia 0.920 0.790 0.851 0.587

Oper. 1 0.928 0.806 0.852 0.587
2 0.928 0.811 -1 0.587
3 0.928 0.815 0.852 0.587
4 0.928 0.819 0.852 0.586

. . . . . . . . . . . . . . .
jb 0.940 0.881 0.856 0.586

. . . . . . . . . . . . . . . . . . . . .

m Startup 1 0.010 0.417 0.790 0.440
2 0.054 0.413 0.790 0.448
3 0.066 0.411 0.789 0.453
4 0.064 -1 0.789 0.454

. . . . . . . . . . . . . . .
ia 0.920 0.790 0.851 0.573

Oper. 1 0.928 0.806 0.852 0.575
2 0.928 0.811 -1 0.575
3 0.928 0.815 0.852 0.574
4 0.928 0.819 0.852 0.574

. . . . . . . . . . . . . . .
jb 0.940 0.881 0.856 0.576

a i : Last startup observation of cycle A
b j : Last operation observation of cycle A

We have collected data from multiple cells across multiple
cycles of different electrolyzers. Ideally, we would like to
use all this data to train our network, but it is not straight-
forward to do so. The reason is because, as previously
explained, each cell presents a different response to operat-
ing conditions, but no feature or labeled data is available to
differentiate them.

One possible approach is to train a base naı̈ve model and
then use transfer learning to retrain the last few layers of
the model. However, we would need to do that for each
cell at the beginning of each cycle, which is a computation-
ally intensive task that would complicate the deployment
(Weiss et al., 2016). Instead, we propose a different ap-
proach inspired by how an expert may look at many cells
and differentiate them based solely on the evolution of their
voltage during the startup sequence. Based on this idea,
we deduce that it is possible to use the voltage of each cell
during the startup phase to infer meaningful features that
characterize such cells.

These features account for both the specificity of the cell
and its degradation and are used as input for the predictor

model. This model also takes the operating conditions in
order to predict the cell’s voltage during the operation phase.
The cell’s voltage is only used as input during the startup
phase for inferring the features. Indeed, the predictor model
does not use the cell’s voltage during the operation phase,
so the predictions are not biased. Given enough data belong-
ing to multiple cells and cycles, we would cover the whole
subspace of possible features. Thus, new cells presented
to the model would behave like cells that the model had al-
ready seen before, and so, it could also predict their voltage
accurately.

By using this approach, it is possible to train a single model
that works for all the cells. Such a model predicts a different
voltage for each cell based not only on the operating condi-
tions but also on the specific cell’s features inferred during
the startup. This effectively avoids the need to retrain the
model for each cycle and cell. At the same time, it allows us
to train it beforehand with the whole dataset that we already
have.

In order to implement this model, we propose a neural
network formed by two subnetworks: a self-supervised
encoder and a decoder – or voltage predictor. These two
subnetworks are developed in detail in the two two following
subsections. The algorithm required for training such a
network is developed in Section 4.3.

4.2.1. ENCODER

The encoder subnetwork is the key part of this model. Its
goal is to infer the features that characterize the behavior of
a particular cell during a certain cycle, using only its startup
phase. It is a self-supervised method, as it does not need
labeled degradation data. This subnetwork does not have a
loss function on its own. Instead, it is trained with the loss
backpropagated from the voltage predictor subnetwork.

At its core, it is a form of performing a dimensionality re-
duction. However, the encoded vector – the dimensionality-
reduced vector – is not the result of a statistical procedure,
but the optimal representation that eases the learning of the
predictor subnetwork.

We use the three input features from the control plant –
temperature, caustic concentration, and electrical current –
as well as the voltage of the cell. These inputs are needed
to standardize the cell’s voltage to the specific operating
conditions of each startup. All in all, the shape of the input
vector is [720 time-steps, 4 features]. The masking layer
forces the successive layers to ignore a time-step if all the
features of that time-step are equal to a masked value, which
is ‘-1’ in order to filter the time-steps added during batch
padding. In order to account for the temporality of the
sequence, the next layer is a Long Short-Term Memory
(LSTM). After it, two dense layers are chained, smoothing
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Figure 4. Encoder subnetwork

shape : 1 x 2
Output: Encoded Startup

shape : 720 x 4
Input: Startup

mask_value : -1
Masking

units : 64
activation : ReLU
Dense

units : 2
activation : sigmoid
Dense

LSTM

units : 128
recurrent_activation : σ
return_sequences : False

the transition to the final two-positional encoded result.

Its output is a vector of coordinates [X, Y] for each cell and
startup, with a shape of (1 time-step, 2 features). Moreover,
these coordinates can be represented in a graph, providing an
insight into the decision process taken by the network. The
characteristics of the layers that compose this subnetwork –
in TensorFlow’s terminology – are depicted in Figure 4.

4.2.2. PREDICTOR

The predictor subnetwork, as its name indicates, is respon-
sible for predicting the cell’s voltage. It takes two inputs:
a window of time-steps from the operation phase and the
encoded representation of the cell’s startup phase. We have
heuristically determined that a window of four observations
is enough to represent the dynamics of the chemical phe-
nomena behind the cell’s response.

The encoded cell’s startup is repeated four times and con-
catenated with the window of operation features. Note
that the voltage is not included in the window of operation
features. Two LSTM layers are used to find temporal cor-
relations between the observations of each window. Two
dense layers follow, in order to output the predicted voltage.
The output layer has a sigmoid activation function, as the
output voltage was scaled previously to the range [0, 1].

The whole model is trained by minimizing the loss between
the voltage predicted by this subnetwork and the measured
voltage. The Adam optimizer (Kingma & Ba, 2014) and the
backpropagation algorithm are used. For this subnetwork to

Figure 5. Predictor subnetwork

shape : 1 x 1
Output: Predicted Voltage

LSTM

units : 128
recurrent_activation : σ
return_sequences : True

units : 64
activation : ReLU
Dense

units : 2
activation : sigmoid
Dense

output_shape : 4 x 5
axis : temporal
Concatenate

LSTM

units : 128
recurrent_activation : σ
return_sequences : False

shape : 1 x 2
Input: Encoded Startup

shape : 4 x 3
Input: Operating Conditions

output_shape : 4 x 2
times : 4
RepeatVector

get a good accuracy in the voltage prediction, the encoder
must learn a faithful representation of the characterization
of the cell. Figure 5 presents its layers’ parameters.

4.3. Training Procedure

We start with the data presented in Table 2. As previously
mentioned in Section 4.2.2, in order to account for the tem-
porality of the chemical reaction, we first need to group four
consecutive time-steps into a single data entry. This data
entry is known as window or observation. In order to train
a model with this kind of data, we define a custom training
loop. Algorithm 3 presents the training loop for stochastic
training – one observation per forward-backward pass.

However, such a training loop is not efficient. In
order to leverage the parallel computation made possi-
ble by GPUs, we use mini-batch training instead. In
this mode of training, many observations are grouped
in a batch and ingested by the GPU at the same time.
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Algorithm 3 Stochastic Training Algorithm
Input: Directory with n cycles in TFRecord format
for each f ile in folder do

cycle← TFRecord.load( f ile)
for each cell in cycle do

cell startup, cell operation← cell.split()
for each window in split(cell operation) do

operating conditions← window[!voltage]
cell voltage← window[voltage][−1]

{Forward pass}
encoded startup← encoder(cell startup)
predicted voltage← predictor(

operating conditions,
encoded startup)

loss← mean squared error(
predicted voltage,
cell voltage)

{Backward pass}
update network weights(loss)

end for
end for

end for

In order to make it possible to tweak different parameters
effortlessly, we decided to generate the windows and batches
in real-time during training. The procedure is similar to that
followed when doing data augmentation, which is used
extensively in computer vision (Taylor & Nitschke, 2017).
While the GPU is processing a batch of windows, the CPU
is already processing the next batch. The GPU is fast, so
the CPU quickly becomes the bottleneck in such a pipeline.
In order to overcome this issue, we use the tf.data.Dataset
API to parallelize the input pipeline. We trained the network
with two GPUs in parallel and a combined batch size of
1024 observations. Thanks to this parallelized CPU input
pipeline, the utilization of both GPUs was consistently over
90%.

Three operations are crucial to make the network converge
efficiently: padding, shuffling, and window striding.

4.3.1. PADDING

Not every cycle’s startup has the same duration. How-
ever, all the batches that we feed to the GPU must have
the same number of time-steps. We solve this problem
by padding the sequences – adding ‘-1’ values at the
end of each observation’s corresponding startup. This
way, all the startups have the same duration of 720 min-
utes, which is the maximum duration of a startup. This
padding value is later ignored by the masking layer of
the encoder subnetwork, so it does not affect the results.

Table 3. Padded startup. i represents the last startup observation
before padding.

Index I T X V

1 0.010 0.417 0.790 0.441
2 0.054 0.413 0.790 0.450
3 0.066 0.411 0.789 0.455
4 0.064 -1.000 0.789 0.454
. . . . . . . . . . . . . . .
i 0.920 0.790 0.851 0.587
i+1 -1 -1 -1 -1
... . . . . . . . . . . . .
719 -1 -1 -1 -1
720 -1 -1 -1 -1

Table 3 shows the startup phase of cycle A after being
padded.

4.3.2. SHUFFLING

We observed that the time required by the network to con-
verge to an optimal solution was reduced considerably by
the introduction of shuffling in the training process. There
is an explanation for this behavior. Without shuffling, most
batches only have observations from a single cell and cycle
of the same electrolyzer. This situation constitutes a problem
because the gradient updates at each batch are very different.
However, after introducing shuffling, each batch has now
observations from different cells, cycles, and electrolyzers.
As a result, we obtain less noise in the backpropagated gra-
dient and a smoother training loss, which helps the network
weights to converge.

However, due to the considerable number of observations in
the training dataset, it is not possible to perform the shuffling
operation entirely in-memory. In order to overcome this
limitation, we combine two strategies:

1. Shuffle Buffer: instead of shuffling the whole dataset,
we only shuffle one subset of observations at a time.
This subset is the shuffle buffer, and its number of
observations is limited by the size of the computer’s
RAM. After the observations have been shuffled, we
give them to the network for training. Once the buffer is
depleted, a new subset is read, and the same operation
is performed again.

2. Interleaving: as previously stated, we have a different
file for each cycle and electrolyzer. We randomly chose
a file, read an observation from it, and add it to the shuf-
fle buffer. This process is repeated in a loop. Thanks
to using interleaving, the shuffle buffer is filled with
observations from multiple cycles and electrolyzers,
thus increasing the randomness of the batches given to
the network.
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4.3.3. WINDOW STRIDING

As previously shown in Algorithm 3, the encoder subnet-
work updates its weights for each batch of operation obser-
vations. However, the encoder task of inferring the cell’s
features during the startup is more complex than that of the
predictor. Hence, it is more efficient to train the network
with fewer observations per cycle and more different startup
sequences. In order to solve this, we increase the stride
of our windowing function. The stride is the number that
defines how many windows of the sequence are ignored be-
tween two consecutive training observations. For example,
a stride of 64 means that, for each cell and cycle, we only
take one window every 64.

4.4. Testing Procedure

4.4.1. PARAMETRIC MODEL

We use the parametric model as the baseline for comparing
the results obtained by our neural network. This model pre-
dicts the cell’s voltage (V̂ ) following the equation presented
in Table 4. The advantage of this model over other paramet-
ric models is the fewer required observations for getting an
equivalent accuracy. This is crucial since its training data is
limited to the startup phase of each cycle.

Table 4. Parametric model

V̂ = u0 +[k+(90−T )∗Ct +(32−X)∗Cx ]∗ I/A

PARAMETERS

Ct : Temperature correction factor [V/◦C ∗m2/kA]
Cx : Caustic correction factor [V/%∗m2/kA]
u0 : Cell’s equilibrium voltage [V ]
k : Load dependent resistance [V ∗m2/kA]
A : Membrane’s surface area [m2]

INPUTS

I : Electrical Current [kA]
T : Temperature [◦C]
X : Concentration [%]

The cell’s manufacturer gives parameter A, which for the
cells in our dataset is 2.721. Parameters Ct and Cx are
estimated for each plant by experts. For our test plant, Ct =
0.0016 and Cx = -0.0031. Parameters u0 and k depend on the
degradation of each specific cell and must be estimated at the
beginning of each cycle. In order to estimate them, a linear
regression is fitted by minimizing the sum of least squares:
∑(V̂ −V )

2 with all of the cycle’s startup observations.

Figure 6. Prediction Flowchart
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4.4.2. METHOD

All the tests were carried out on data collected from three
years of an electrolyzer. During this period, the electrolyzer
went through 40 different cycles. As the electrolyzer has
160 cells, there are 6400 combinations of cells and cycles in
the dataset. The data used follows the structure previously
presented in Table 2.

A new parametric model was fitted for each cell during the
startup phase of each cycle, following Equation 2. Conse-
quently, this means that 6400 different models were trained.
In contrast, with our approach, only one neural network
model was trained. The network was trained with data from
six different electrolyzers from the same plant, each one
having different cells and startup sequences. In total, around
43200 combinations of cells and cycles were seen by the
network during training. Of course, the electrolyzer used
for testing was neither used for training nor for validation
to decide when to stop training the network. For making
the predictions, the network receives the startup sequence,
but no retraining is performed. Figure 6 illustrates the dif-
ferences between the process followed by the parametric
model and the one followed by the neural network.

5. Results and Discussion
5.1. Network Insight

We start by discussing the encoder’s results. In Figure 7, it
is possible to see the evolution of the encoding of cells X, Y,
and Z along cycles A, B, and C of the testing electrolyzer.
Each point presented in Figure 8 corresponds to the encoded
startup sequence of a specific cell and cycle. As previously
explained, each cell has its own specificity and degradation.
Let us take the example of cell Z to showcase the veracity
of the encoder’s results. We know thanks to an expert that
cell Z is the most degraded cell of the whole electrolyzer for
these three cycles. In the graph, we can clearly see this, as
cell Z is plotted at the cycle’s extreme. Since the startup’s
sequences of the testing electrolyzer are different from those
of the training electrolyzers, we prove that the encoder is
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Figure 7. Evolution of the encoding of cells X, Y, and Z along
cycles A, B, and C. The axes of the graph do not have units, as they
are the result of a dimensionality reduction. They take values in
the interval [0,1] since the encoder’s output is a sigmoid function.

0.4 0.42 0.44 0.46 0.48 0.5 0.52

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52 Cycle A
Cycle B
Cycle C

Encoded Startup

X

Y

Cell X
Cell Y
Cell Z

effectively learning the degradation of the cells and not only
memorizing the startup sequences.

Furthermore, the relative position of a cell compared to the
rest of the cells of that cycle stays stable over time. This
circumstance can be used as a safeguard for the prediction.
Indeed, if we notice that the predicted voltage of a cell
presents a significant error, we can check in the graph if the
relative position of that cell has changed between the last
cycle and the current one. If there is a significant variation,
the voltage prediction error is most likely due to a problem
with the encoder subnetwork and not with the cell. This is
why we say that the network’s results can be interpreted.

In Figure 8, we present the output voltage of the three cells
highlighted in Figure 7 during a subset of the operation
phase of cycle A. We show that our model is capable of
predicting their respective voltages. We can also see that the
cell X, whose startup was plotted at the top of the cycle in
Figure 7, present the lowest voltage of the three. Cell Y was
encoded in the middle in Figure 7 and, indeed, its voltage
is between the two other cells. Similarly, cell Z was at the
bottom of the cycle in Figure 7, and it presents the highest
voltage in Figure 8. This result is consistent in our tests with
different cells. Thus, we can conclude that the magnitude
of the predicted voltage is related to the position learned by
the encoder.

In order to better visualize the prediction error, a closer
look into a two-day period of the operation phase of cycle
A is provided in Figure 9. We compare the behavior of
the neural network against the parametric model and show
that the voltage predicted by the network is more stable

Figure 8. Predicted voltage for cells X, Y, and Z during a period of
one week belonging to cycle A. The solid lines represent the real
voltage of each cell, while the dotted lines represent the predicted
voltage by the network.
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than the one predicted by the parametric model. Indeed, the
parametric model produces an unstable behavior because the
experts’ understanding of the reaction’s kinetics is limited,
and because, as previously explained, the parametric model
must be simple in order to be trained using only the startup
data.

The response of the cell varies between a high load and a
low load. However, the parametric model is not capable of
adapting its response to both of them, so it fits a response
based on a medium load. Hence, an increased error is notice-
able in Figure 9 when the current is around 16 kA or around
7 kA. Indeed, the parametric model works better around
13 kA, which corresponds to a medium load. The neural
network, however, has no problem predicting the response
for the different load levels, as it is not constrained to follow
a linear relationship between the inputs. The fact that our
model considers the temporality of the time series also con-
tributes to decreasing the absolute error, as the kinetics of
the cell are taken into account by the predictor subnetwork.
This is especially helpful during load changes, as the model
produces smooth transitions.

5.2. Accuracy

We are interested in comparing the accuracy between cycles
(inter-cycle), as well as comparing the accuracy inside the
cycle (intra-cycle). We seek accurate results in both cases.

5.2.1. INTER-CYCLE

For each cell and cycle, we calculate the average absolute
error for all the observations. We then calculate a set of
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Figure 9. Extract of cycle A. The upper subgraph shows the ab-
solute error between the predicted and the measured voltage, av-
eraged over Cells X, Y, and Z. The lower subgraph presents the
electrical current.
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statistics for that averaged error, which are presented in
Table 5. Measuring the accuracy between cycles is vital, as
a model must work correctly for as many cells and cycles
as possible. In fact, a model that is consistent with its
predictions is preferred over a model that makes excellent
predictions for some cells but weak ones for the rest of them.
Even if the former has a higher error on average.

Based on the results presented in Table 5, we conclude that
our neural network is more reliable than the parametric
model. Not only is the average error lower, but also the
standard deviation, which indicates that the error is less
dispersed between different cells and cycles. The parametric
model produces more outliers, as its two highest percentiles
present a significant deviation compared to those of the
network.

Table 5. Statistics of the average absolute error of both models
across the different cells and cycles, presented for different per-
centiles.

Stats Neural Network [mV ] Parametric Model [mV ]

µ 11.977 25.668
σ 11.503 30.304
P25% 5.470 8.398
P50% 8.432 16.225
P75% 13.488 30.760
P90% 24.167 53.262
P95% 35.461 82.745
P99% 62.676 157.488

Table 6. Average statistics of the absolute error inside a cycle,
presented for different percentiles.

Stats Neural Network [mV ] Parametric Model [mV ]

µ 11.977 25.668
σ 4.586 6.109
P25% 8.72 21.637
P50% 11.85 25.435
P75% 14.975 29.816
P90% 17.712 33.184
P95% 19.338 34.943
P99% 22.213 39.088

5.2.2. INTRA-CYCLE

For each combination of cell and cycle, we calculate a set
of statistics that represents the distribution of the error and
average them across all the 6400 combinations. Table 6
presents these results. The neural network obtains better
results than the parametric model for all the statistics. As
expected, the average voltage is the same as in Table 5.

We can conclude that the accuracy intra-cycle is better than
the inter-cycle one. One possible explanation for this differ-
ence comes from the startup phase. For the neural network,
when the encoder works correctly, the error stays constant
inside the cycle. However, when the encoder fails to iden-
tify the degradation of the cell correctly, the accuracy of
the whole cycle is penalized. The same holds true for the
parametric model. When the startup is short, it does not
have enough data to train, and the predictions are inaccurate
for the whole cycle.

5.3. Fault Detection

As mentioned in the introduction, the end goal is to detect
faults in cells before they happen. The indicator is the
divergence between the cell’s predicted voltage by a trained
model and the cell’s measured voltage.

In order to demonstrate that our neural network is appropri-
ate for this task, we used the sequence of a faulty cell that
was previously identified by an expert. Figure 10 shows how
the error between the predicted voltage and the measured
voltage increases during the 48 hours that precede the fault.
The error increases slowly until it reaches a plateau. It then
stays stable for some hours until it starts to increase again
with a more pronounced slope. It is desired to detect the
fault before the plateau, as that would give the plant’s opera-
tors more time to react and plan the maintenance. Therefore,
the more accurate the model is, the earlier the impending
fault can be detected.

We set the fault detection threshold to the average 99th per-
centile intra-cycle error, as presented in the last row of Ta-
ble 6. In order to minimize the appearance of possible false
positives, we add an extra tolerance of 10 mV. This results
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Figure 10. Divergence between the predicted voltage and the mea-
sured voltage during the 48 hours preceding a cell’s fault.
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in a threshold of 32 mV for the neural network and 49 mV
for the parametric model. In this case, the network was able
to detect the fault 31 hours before it happened, which is a
gain of 12 hours compared to the parametric model.

6. Conclusion
In this article, we present a new approach for detecting faults
in electrochemical cells by using a neural network model
composed of an encoder and a decoder. Results show that
this approach presents many advantages over expert-defined
parametric models currently used for this task. Namely, the
key points of our approach are:

1. Better accuracy. Our model is capable of predicting
the cell’s voltage more accurately. We use a neural
network that is not based on suppositions of the un-
derlying chemical function. Instead, it is trained with
a substantial amount of data coming from previous
electrolyzers. It also takes into account the temporal
relations that exist between the observations, thanks to
its LSTM layers.

2. Less human intervention required. There is no need
for an expert to spend time finding the specific parame-
ters needed by each plant. This entails that the model
may be deployed to more plants with little effort just
by retraining the model, which in turn helps to improve
their operational safety.

3. Interpretability. The output of the encoder can be plot-
ted and explained, which helps the user to verify the
correct functioning of the neural network. As the safety
of the plant and its operators rely on the model, inter-
pretability is very important.

4. Continuously improving method. As more data is col-
lected from different cells and cycles, it is possible
to retrain the model to include them. This will help

reduce edge cases and the overall error of the neural
network.

5. Simple deployment. A single model is valid for multi-
ple cells and cycles without needing retraining once de-
ployed. Therefore, the implementation of the model in
the plant does not require extensive computing power.

Thanks to this model, we can confidently say that we are
one step closer to a fully automatic management of plant
maintenance.

7. Future Work
There are, however, some caveats and suggestions that could
be further investigated in future models:

• If the encoder does not find a good representation of a
cell’s startup, the voltage prediction for its operation
phase will be incorrect. This happens scarcely, and,
with more data available, it should occur even less
often. Nevertheless, a safety fallback must be designed
for these cases.

• It would be interesting to try to replace the LSTM
encoder by an attention-based encoder in order to see
if better accuracy is attained (Vaswani et al., 2017).

• Neural network’s compression is an active field of re-
search that could help in requiring less computing
power and memory for making predictions (Polino
et al., 2018).
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