DANIEL BUADES MARCOS

 \checkmark daniel@buad.es | \checkmark +1 4

| **L** +1 438-921-2325 | **Q** daniel.buad.es

in dbuades | O dbuades

SKILLS

Machine Learning & Data Science	$\mathbf{Pytorch}, \mathbf{TensorFlow}, \mathrm{scikit-learn}, \mathrm{pandas}, \mathrm{Elastic} \mathrm{Stack}, \mathrm{Plotly} \mathrm{Dash}$
Containers & Virtualization	${\bf Kubernetes}\ ({\rm Helm}, {\rm Kubeflow}, {\rm Tr}{\tt æfik}, {\rm kubeadm}), {\rm Docker}, {\rm Linux}\ {\rm KVM}$
DevOps	Github Actions CI/CD, IaC (Terraform, Ansible, Packer, cloud-init)
System Administration	Linux (Ubuntu Server, Arch), Google Cloud, AWS
Programming	\mathbf{Python} , Bash, Java, SQL, $\mathbb{IAT}_{\mathbf{E}}\mathbf{X}$
Languages	English (114/120 TOEFL), French, Spanish

RELEVANT EXPERIENCE

Machine Learning Scientist Intern	May 2018 - Jan 2020	
R2 Inc Improving industrial processes safety with predictive maintenance.	Montreal	
• Prototyped and tested new deep-learning approaches to make real-time predictions on streaming data.		
• Coded data ingestion pipelines, trained models distributedly and containerized deploy	yments.	

- Developed models based on Attention, LSTMs, CNNs, Autoencoders and other neural network architectures.
- Followed a CI/CD strategy to keep track of possible regressions and minimize concept drift.

Course Lecturer	Sept 2018 – May 2019
Polytechnique Montréal - IND8217: Analytique de défauts et maintenance	Montreal
• Statistics and machine learning applied to preventive maintenance and equipment fa	ailure prediction.
• Responsible for teaching and designing its contents, assignments and examinations.	

EDUCATION

M.Sc.A. in Industrial Engineering - Machine Learning Polytechnique Montréal Canadian post-graduation work permit valid until 01/2023	Sept 2017 - Dec 2019
B.Eng. in Industrial Technology Engineering	
Universitat Politècnica de València, Spain	Sept 2013 - Jan 2017
Polytechnique Montréal - Recipient of an Erasmus+ KA107 grant	Jan 2017 – Jun 2017

PROJECTS

M. Thesis: A Deep Learning Approach for Condition-Based Fault Prediction in Industrial Equipment

- Developed a single deep learning model that replaced all the multiple expert-defined models used in production.
- Achieved 64% earlier fault detection, improving reliability while significantly reducing human intervention.
- NeurIPS 2019 LXAI Workshop Using a Self-Supervised Encoder for Predicting Faults in Electrochemical Cells

Continuus Sentiment Analysis on Twitter Streaming Data

- Collect tweets in real-time and index them in Elasticsearch for search, analysis and visualization with Kibana.
- Fine-tune different BERT-derived NLP models for the task and serve predictions over REST and gRPC APIs.
- Producer and consumers deployed as microservices on Kubernetes and decoupled via a RabbitMQ queue.

Self-Hosted Homelab

- Single Linux server hosting a virtual Kubernetes cluster composed of multiple KVM-based VMs and ZFS storage.
- Multiple microservices deployed in order to learn and experiment with new technologies.

Financial Statement Analysis of the ACS Group

- Perform fundamental and technical analysis of the sector and stock to make informed investment decisions.
- Research the company's assets, analyze their activities and search for correlations with competitors.